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H I G H L I G H T S  

• A set of benchmarks for evaluation of the NO2, SO2, CO and PM10 simulation over China are proposed. 
• Three commonly used statistical indicators (NMB, NME, and R) were proposed for the validation of the four pollutants. 
• The goal benchmarks of NMB for NO2, SO2, PM10, and CO are <20%, <25%, <20% and <25%, respectively.  
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A B S T R A C T   

Photochemical air quality models (AQMs) are a vital tool for atmospheric pollution research and have been 
widely used in various applications, such as air quality prediction and evaluation of pollution control strategies. 
Before using these models for further studies, it is essential to thoroughly evaluate their reliability and accuracy. 
While previous guidelines and benchmarks have primarily focused on fine particulate matter (PM2.5) and ozone 
(O3), there is still a lack of benchmarks for evaluating the model performance on primary criteria pollutants such 
as sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter with aerodynamic 
diameter less than or equal to 10 μm (PM10). The use of air quality models in China has increased significantly in 
the past decades. However, there is still a lack of standardized benchmarks for the performance evaluation of 
these models. Building upon our previous work on PM2.5 and its chemical species, we propose a set of bench
marks for evaluating the performance of the aforementioned four air pollutants. Initially, we identified a total of 
475 papers published during 2007–2019 that utilized at least one of the five commonly used AQMs in China. 
From these papers, we selected 164 articles that provided model performance evaluation (MPE) results of the 
four primary air pollutants. The three most frequently used Model Performance Evaluation (MPE) metrics were 
selected to analyse the impact of different model configurations on the reported statistics, including modelling 
region, season, and emission inventory. Lastly, three commonly used statistical indicators, including normalized 
mean bias (NMB), normalized mean error (NME), and correlation coefficient (R), were proposed for the vali
dation of simulated NO2, SO2, CO, and PM10. Two sets of benchmarks are given, including the "goal" and 
"criteria". The "goal" represents the best range of performance that a model can be expected to achieve, and the 
"criteria" represents performance that the majority of studies have achieved. We recommend R values above 0.50, 
0.35, 0.45, and 0.40 for NO2, SO2, PM10, and CO, respectively, in order to meet the "criteria" benchmark. If the 
"goal" benchmark is to be achieved, the corresponding R values are 0.60, 0.55, 0.60, and 0.60. The "goal" 
benchmarks of NMB for NO2, SO2, PM10, and CO are within ±20%, ±25%, ±20%, and ±25%, respectively; 
while the "goal" benchmarks of NME for the four pollutants are less than 40%, 45%, 45%, and 60%, respectively. 
These benchmarks supplement our previous benchmarks for PM2.5 and its components and provide a more 
comprehensive guideline for the air quality modelling community in China.  
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1. Introduction 

Over the past decades, air pollution has become a growing concern in 
China, leading to increased use of air quality models (AQMs) to inves
tigate causes of air pollution, chemistry and transport, the effectiveness 
of emission reduction strategies, and to provide air quality forecast to 
the public (Cheng et al., 2019; Huang et al., 2019; Shi et al., 2021). 
Evaluating the performance of these models against measured ambient 
pollutant concentrations recorded by monitoring networks is essential to 
determine whether modelling results align with expected outcomes. 
However, there is no universally accepted "good or bad" measure of 
model performance; rather, the quality of the model depends on the 
research objectives, such as chemical sensitivity, pollution source 
analysis, or air quality prediction. The reliability of subsequent research 
is reflected in the results of model performance evaluations. In 1991, the 
US Environmental Protection Agency (EPA) issued a guidance document 
that provided indicators for evaluating the performance of models in 
simulating ozone levels. Boylan and Russell (2006) first proposed the 
concept of "goals" and "criteria" for assessing model performance, in 
which "goals" represent the maximum extent of model-observation 
agreement models can technically achieve given known inherent limi
tations, and "criteria" represent an acceptable level of model-observation 
agreement for modelling applications. These concepts were later upda
ted by Emery et al. (2017) and extended to recommend evaluation 
procedures and benchmarks for ozone and PM evaluation in North 
America. Similarly, the Forum for Air Quality Modelling In Europe 
(FAIRMODE) provided recommendations and guidance for assessing 
model performance related to a given air quality model application in 
the frame of the Air Quality Directive (AQD) based on the experience 
and elaborations in the FAIRMODE community (Janssen et al., 2022). 
However, it is important to note that different regions may have unique 
factors that can impact model performance, such as meteorology, local 
topography, regulatory settings, etc. The availability and accuracy of 
local emission inventories, including the magnitude of emissions and 
their speciation, as well as details of temporal and spatial variations, can 
greatly influence model outcomes. Therefore, the benchmarks that are 
applicable to one region may not be appropriate for other regions. Some 
regions, particularly those lacking local emission inventories, may find 
the benchmarks too stringent, while others that have invested signifi
cant efforts in improving their emission inventories may find them too 
lenient. 

In our previous work (Huang et al., 2021), we introduced a set of 
benchmarks to evaluate the performance of AQMs in reproducing the 
spatial and temporal variations of PM2.5 and its chemical components in 
China. However, the existing guidelines and benchmarks for evaluating 
model performance have mainly focused on PM2.5 and O3 simulations 
(Huang et al., 2021; Yang and Zhao, 2023), neglecting other important 
criteria pollutants like SO2, NO2, CO, and PM10. This gap in model 
performance evaluation has been largely overlooked thus far. This study 
aims to expand the benchmark framework for evaluating model per
formance with respect to primary air pollutants, specifically NO2, SO2, 
PM10, and CO. Unlike PM2.5, which consists of both primary and sec
ondary portions, the accuracy of primary pollutants is heavily influ
enced by the precision (both temporal and spatial representation) of the 
emission inventory and simulated meteorological conditions. Our study 
follows a similar structure to our previous study (Huang et al., 2021). 
Section 2 outlines the data source and methodology employed, while 
Section 3 presents the major results, including the impact of different 
model configurations on model performance. The paper concludes by 
offering recommended evaluation metrics and associated benchmarks 
for each air pollutant. By expanding the benchmark framework for 
assessing the performance of AQMs for primary air pollutants, we aim to 
contribute to a more comprehensive evaluation of model performance 
and enhance the reliability of air quality models in China. 

2. Methodology 

2.1. Data compilation 

As in our previous work, published results from five AQMs were 
compiled, which are the Community Multiscale Air Quality (CMAQ, 
Foley et al., 2010), the Comprehensive Air Quality Model with Exten
sions (Campbell et al., 2017), the Weather Research and Forecasting 
model coupled with Chemistry (WRF-Chem, Grell et al., 2005), the 
Nested Air Quality Prediction Modelling System (NAQPMS, Wang et al., 
2006), and the Goddard Earth Observing System (GEOS)-Chem 
(http://geos-chem.org, last access: October 21, 2023). We conducted a 
comprehensive search of the Web of Science database using the key
words "China", "model name", and "pollutant name" (one of PM10, SO2, 
NO2, CO) from 2007 to 2019. This yielded a total of 475 relevant arti
cles. The same selection procedure as our previous work (Huang et al., 
2021) was then applied, resulting in a final set of 164 articles (See 
Table S1 for details). During the selection process, conference articles 
and articles not published in English-language journals were excluded. 
Each article was manually reviewed to eliminate studies that did not 
utilize any of the models in their research, studies that focused on ob
jectives other than air quality modelling (such as evaluating meteoro
logical simulations), studies that were not cantered on China (for 
example, those targeting regions in Korea or Japan), studies that did not 
provide any evaluation of air quality model performance and studies 
that conducted model performance evaluation but did not present nu
merical values (only graphical plots were provided). Values of a total of 
26 statistical indicators reported in the 164 articles were collected (see 
Table S2 for a list of statistical metrics used in the complied studies), 
together with the detailed model configurations, including the study 
region and period, the grid resolution of model simulation, the source of 
emission inventory used for model validation, etc. We focused on dis
cussing the results of several metrics that have a sufficient number of 
reported values, which are the correlation coefficient (R), normalized 
mean bias (NMB), and normalized mean error (NME). The correlation 
coefficient reflects the model’s ability to capture the observed spatial 
variations, while NMB and NME indicate how well models capture the 
magnitude of observations. The calculation formula is shown in Table S3 
and all abbreviations are shown in Table S6. 

2.2. Derivation of benchmarks 

We derived the recommended MPE benchmarks for the four primary 
criteria pollutants following the methodology established by Emery 
et al. (2017) and employed in our previous study (Huang et al., 2021). 
The rank-ordered distributions of each selected MPE indicator were 
generated to determine the 33rd and 67th percentiles, representing the 
"goal" and "criteria" benchmarks, respectively. Studies within the 33rd 
percentile range represent the best model performance that models can 
be expected to achieve given known inherent limitations such as dis
cretization, parameterizations, and input uncertainties. Studies within 
the 33rd and 67th percentile range indicate model performance that is 
typically achieved, and studies beyond the 67th percentile indicate 
relatively poor performance for that particular metric. 

3. Results and discussions 

3.1. General overview of air quality modelling studies for primary criteria 
pollutants in China 

The number of modelling studies on the four primary air pollutants 
in China has seen a significant increase over the past years, as shown in 
Fig. 1a. The rise in awareness of environmental protection in China and 
increased research funding from the government have contributed to 
this growth. A breakdown of the number of studies conducted for each of 
the four pollutants reveals a gradual shift of research focus from PM10 
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prior to 2015 to NO2 after 2015 (Fig. 1b). This shift is likely associated 
with the increased attention given to coarse particulate matter pollution 
in earlier years and then to PM2.5 and ozone, of which NOx is a critical 
precursor for both pollutants. In terms of the models used, CMAQ was 
the most frequently employed (72 out of 169), followed by WRF-Chem 
(69 studies). CAMx and NAQPMS were used less frequently, with 15 
and 9 studies, respectively, while the GEOS-Chem global model was the 
least frequently used (4 studies). The limited use of GEOS-Chem can be 
attributed to its primary focus on global pollutant sources and transport, 
with fewer studies specifically examining China. Regarding the MPE 
metrics, the most commonly used indicators include correlation coeffi
cient (R, reported in 115 studies), NMB (86 studies), root mean square 
error (RMSE, 73 studies), mean bias (MB, 67 studies), NME (59 studies), 
IOA (32 studies), fractional bias (FB, 31 studies), and fractional error 
(FE, 28 studies) (Fig. 1c). Same as studies for PM2.5 (Huang et al., 2021), 
Beijing-Tianjin-Hebei (BTH, 64 studies) has been the most extensively 
studied, followed by Yangtze River Delta (YRD, 39 studies) and Pearl 
River Delta (PRD, 40 studies, see Table S4 for definition of regions). 
These regions are of particular interest due to their high level of eco
nomic development, population density, and the obvious air pollution in 
China. 

3.2. Quantile distributions of selected MPE metrics 

Fig. 2 illustrates the distributions of the three most frequently re
ported model performance metrics for the four primary air pollutants. 
The median value, representing the middle point of the data, is indicated 
by the centre line, with 50% of the data falling above and below the 
median. The mean value is represented by the small box, where the 
upper and lower limits correspond to the 25th and 75th percentile 
values. The whisker line extends to 1.5 times the interquartile range. 
Outliers were excluded. The median R values were 0.58 for NO2, 0.48 for 
SO2, 0.58 for PM10, and 0.52 for CO. Some studies reported negative R 
values for all pollutants except NO2. For PM10, negative R values may 
have resulted from the model underestimating precipitation rates 
(Bouarar et al., 2019). In terms of NMB, all four pollutants were 
generally underestimated, with median values of − 4.0% for NO2, -1.4% 
for SO2, -19.0% for PM10, and -32.9% for CO. In particular, PM10 and CO 
were particularly underestimated, which could be due to the underes
timation of local CO emissions (Zhang et al., 2016) or the inability of the 
model grid to adequately resolve specific sources, such as 
traffic-oriented monitoring or large point sources. For NME, the median 
values ranged from 47.0% (NO2) to 61.0% (CO). SO2 exhibited the 
widest range of NMB (− 84.2%–140.5%) and NME (0.3%–147.0%) 
compared to the other three pollutants. This might be due to (1) SO2 
concentration is the lowest in terms of absolute magnitude; (2) SO2 
emissions are more strongly associated with high stacks, so under
estimating or overestimating emissions can lead to poor simulations (Liu 
et al., 2010; Zhang et al., 2019); and (3) uncertainties in the 

meteorological modelling, calculation of dry deposition rates, and 
oxidation rates of SO2 (Biswas et al., 2020; Matsui et al., 2009). 

Compared to secondary air pollutants (e.g., PM2.5, O3), the model 
performances of these primary pollutants are more influenced by the 
location and sensitivity of monitors and the accuracy of the emission 
inventory. For example, PM10 was sensitive to deposition on vegetation 
surfaces surrounding the monitor (Langner et al., 2011). Monitor 
sensitivity limitations could be important for NO2 as PAN and other 
compounds could be detected as NO2 (Gaffney et al., 1998). PM10 could 
also have intense sources that were less intense for other pollutants, such 
as quarries. In addition, construction dust, an important source of PM10, 
exhibited stronger annual variations due to project completion. Thus, 
the quality of PM10 emission inventory may be decoupled from that of 
other pollutants (Hong et al., 2017; Zheng et al., 2009). The evaluation 
uncertainties may also arise from using a monitoring station to validate 
the simulated results from the nearest model grid (Kumar et al., 2022). 
AQMs can be applied with different spatial resolutions, from less than a 
few km to more than 50 km. As shown in Fig. S1, simulations conducted 
with a spatial resolution finer than 10 km generally show higher R 
values than spatial resolution coarser than 10 km, especially for NO2. 
The NMB, however, does not differ significantly among simulations 
using different spatial resolutions. Furthermore, for species like NO2, 
estimation of solar intensity and photolysis rate by different models can 
also affect the simulated results. For example, CAMQ adopts the JPROC 
photolysis mechanism derived from the Regional Acid Deposition Model 
(RADM) (Byun and Ching, 1999), while the WRF-Chem applies the 
Fast-J mechanism (Wild et al., 2000). 

3.3. Variations in model performance 

As shown in Fig. 2, the model performance of a single air pollutant 
could vary substantially in different applications with different model 
configurations. The analyses below provide a supplemental reference for 
the performance ranges for the specific factors presented. Note that we 
only present results with a sufficient number (>20, except CO) of data 
points for discussions. 

3.3.1. Impact of season 
Fig. 3 shows the R and NMB distributions for four pollutants across 

different seasons. In terms of seasonal distribution, the amount of data 
for PM10 was significantly higher than other pollutants in spring due to 
the presence of more dusty weather in spring (Bao et al., 2021). In 
winter, the amounts of PM10, SO2, and NO2 are higher, due to the higher 
use of coal in winter (Fan et al., 2020; Zhang et al., 2017). In terms of R 
values, the simulated NO2 exhibited the lowest R for spring (median 
value: 0.46) compared to other seasons. NO2 tended to be more under
estimated in spring and fall (median NMB values were − 8.7% and 
− 12.4%, respectively), while overestimated in winter (median NMB =
8.3%) and summer (median NMB = 9.8%). When evaluating NO2 on an 

Fig. 1. (a) Number of studies published during 2007–2019, (b) number of studies evaluating each pollutant and AQM model pair, and (c) frequency of the use of 
each metric. 
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annual scale, the median NMB value was close to zero, indicating an 
equal number of studies reporting negative and positive NMB values. 
Overall, NO2 generally tended to be better simulated in summer and 
winter. For SO2, the median R values for all seasons, except for fall, were 
higher than 0.50. The median NMB values for SO2 were generally within 
±5.0%, except for spring (median NMB = − 12.9%). It is worth noting 
that the simulated SO2 in winter exhibited a wider range of NMB 
(ranging − 79.6%–124.0%), indicating higher uncertainties in winter
time SO2 emissions, probably associated with a lack of several SO2 re
action mechanisms, such as heterogeneous reactions (et al. Sha et al., 
2019a; Zheng et al., 2019). Compared to NO2 and SO2, PM10 exhibited a 
better performance in terms of R values (median values > 0.5) but 
tended to be underestimated across all seasons (median NMB ranging 
from − 25.6% to − 1.9%). The underestimation observed in winter could 
be attributed to the absence of dust emissions in the simulations (Liu 
et al., 2018) and the perception that emissions are underestimated (Koo 
et al., 2015). The prevalence of dust weather in spring leads to higher 
PM10 concentrations (Filonchyk et al., 2018), which may explain the 
greater underestimation of NMB during this season. CO was largely 
underestimated across all seasons (median NMB: 60.1% to − 50.0%), 
except for winter (median NMB: 11.5%). The performance in spring and 
fall was particularly poor, with NMB values indicating complete un
derestimation. Additionally, the R values for CO in spring were the 
lowest (median R: 0.35) among all seasons. This could be attributed to 
significant biomass burning activities in Southeast Asia during spring, 
resulting in high background CO concentrations in the modelled region 
(Lin et al., 2014). These activities may not be adequately accounted for 

in the emission inventory. 

3.3.2. Impact of modelling region 
The variations in model performance across different regions were 

also investigated. However, due to limitation in data availability, the 
comparison was only conducted for the three most extensively studied 
regions, namely the BTH, YRD, and PRD (Fig. 4). For NO2, BTH shows a 
slightly higher median R value (0.67) compared to the other two regions 
(less than 0.60). PRD tended to underestimate NO2, with a median NMB 
of − 11.8%, whereas the other two regions had roughly equivalent un
derestimation and overestimation. For SO2, the median R values were 
similar across the three regions (0.40–0.54), but the NMB shifted from 
overestimation in the north to underestimation in the south. This may be 
attributed to the overestimation of SO2 emissions, as indicated by pre
vious studies (Matsui et al., 2009; Yue et al., 2018). PM10 showed a 
slightly higher median R value for BTH (0.66) than YRD and PRD (0.50 
and 0.58). The median NMB values were negative (− 15.6% to − 9.0%) in 
all three regions. The amount of data for CO was the least among the four 
pollutants. The lowest median R value (0.48) was found for YRD and the 
highest (0.67) for BTH. CO was significantly underestimated in all three 
regions, particularly in the PRD (median NMB: 64.1%). Overall, there 
was a trend towards lower correlations and more underestimations from 
north to south for SO2 and CO. However, for NO2 and PM10, the three 
regions exhibit similar MPE results. 

3.3.3. Impact of emission inventory 
The accuracy of the emission inventory is especially crucial for the 

Fig. 2. Quantile distribution of NO2, SO2, PM10, and CO performance metrics compiled.  

Fig. 3. Quantile distributions of R and NMB of NO2, SO2, PM10, and CO by season.  
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model performance of these primary air pollutants. A local emission 
inventory refers to one that is specifically developed for a particular 
region, such as a city or province (e.g., Zhou et al., 2017), as opposed to a 
national or global inventory. The development of local emission in
ventories involves the use of local emission factors, measured source 
profiles, and detailed emission activity data to improve the accuracy of 
the inventory (Lang et al., 2017; Liu et al., 2018). Thus, it is generally 
expected a locally developed emission inventory should result in better 
model performance. 

In this study, we divided MPE results into two groups (Fig. 5): studies 
that used locally developed emission inventories and studies that used 
non-local emission inventories. It is worth noting that locally developed 
emission inventories are typically used for nested domains with finer 
spatial resolutions, while national or regional emission inventories are 
used for coarser spatial resolutions and studies that cover multiple re
gions. Overall, the use of local emission inventories tends to lead to 
slightly higher and narrower distribution of R values for all four pol
lutants. However, the distribution of NMB values does not show 
noticeable improvement when using local emission inventories 
compared to non-local inventories. Specifically, for R values, using a 
local emission inventory generally leads to a narrower distribution for 
NO2, SO2, and PM10, with the median R value ranging from 0.57 to 0.60. 
In contrast, the median R value for non-local emission inventories ranges 
from 0.44 to 0.57. This suggests the simulations using local emission 
inventories are more consistent with ground observations. For CO sim
ulations, the median R values for non-local emission inventories (0.53) 
are slightly higher than that of the local emission inventory R value 
(0.52), but the former is more scattered. In terms of NMB, both PM10 and 

CO local emission inventories exhibit more scattered distributions. 

3.4. Recommended metrics and benchmarks 

Fig. 6 shows the rank-ordered distributions of R, NMB, and NME 
results for all pollutants examined in this study (for statistical purposes, 
all values were sorted after taking absolute values). The 33rd and 67th 
percentiles of R were calculated for each pollutant and metric. In terms 
of R, NO2 shows the highest values for both percentiles, with 0.68 for the 
33rd percentile and 0.50 for the 67th percentile. This was followed by 
PM10 (0.65 and 0.47), CO (0.64 and 0.42), and SO2 (0.58 and 0.39). In 
other words, an R value of 0.60 for SO2 simulation would be considered 
among the top 33rd percentile, whereas for NO2, it would only be 
around the 50th percentile. For bias and error, NO2 also demonstrated 
the best performance compared to other pollutants (except for the 67th 
NME value). The 33rd percentile of absolute NMB and NME for NO2 
were 13.0% and 38.0%, respectively, and the corresponding 67th 
percentile values were 27.0% and 54.4%. CO exhibited the greatest 
variability in terms of absolute NMB, ranging from 18.5% to 57.3% for 
the 33rd to 67th percentile interval. The overall trend of NME was 
similar to NMB but with much weaker variability. For PM10 and CO, the 
33rd to 67th range of NME was 43.7%–52.0% and 55.7%–64.0%, with 
both showing a difference of less than 10%. 

Based on the above analysis, the recommended statistical indicators 
and associated benchmarks for the four primary air pollutants are pre
sented in Table 1. The first one-third of studies represent the "goal" 
values, indicating the best level that the current models are expected to 
achieve. The first two-thirds of the studies represent the "criteria" values, 

Fig. 4. Quantile distribution of R and NMB of NO2, SO2, PM10, and CO for BTH, YRD, and PRD.  

Fig. 5. Selection of emission inventory on model performance. (The left side of the number in parentheses represents the number of data points that used a local 
emission inventory and the right represents number of data points used a non-local emission inventory). 
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which most studies can meet. For example, to meet the goal and criteria 
benchmarks for NMB of NO2, the values should be within 20.0% and 
30.0%, respectively. The corresponding values for NME are 40.0% 
(goal) and 55.0% (criteria). In terms of R, the recommended benchmark 
value for NO2 is 0.60 for “goal” and 0.50 for “criteria”. Due to the 
relatively small amount of data points for CO, caution should be taken 
when applying these benchmarks. Table S5 compares the proposed 
benchmarks for criteria pollutants with existing benchmarks for PM2.5 
from our previous study (Huang et al., 2021) and benchmarks for PM2.5 
and O3 from Emery et al. (2017), which were derived from simulation 
results conducted for North America. Compared to the benchmarks for 
PM2.5 and O3, the benchmarks for the four criteria pollutants proposed 
in this study are much less stringent (except for PM2.5 in Emery’s study), 
especially for NMB and NME. 

4. Conclusions 

This study presents a comprehensive analysis of the application of 
photochemical air quality models in China, with a focus on four primary 
air pollutants, namely NO2, SO2, PM10, and CO. A total of 164 published 
papers that reported extractable model performance results were 
compiled. Key model configurations, such as model types, study areas, 
emission inventories, and results of performance evaluation metrics, are 
analysed and discussed. The impact of different model configurations on 
the model performance is examined, including the study area, study 
period, spatial resolution, and choice of emission inventory. This study 
proposes a set of benchmarks for three widely used metrics, namely R, 
NMB, and NME, for each of the four pollutants, based on the principles 
of "goals" and "criteria". To meet the "criteria" benchmark, the recom
mended R values for NO2, SO2, PM10, and CO are above 0.50, 0.35, 0.45, 
and 0.40, respectively. If the "goal" benchmark is to be achieved, the 
corresponding R values are 0.60, 0.55, 0.60, and 0.60. The "goal" 
benchmarks of NMB for NO2, SO2, PM10, and CO are <±20%, <±25%, 
<±20% and <±25%, respectively. The "goal" benchmarks for NME are 
<40%, <45%, <45%, and <60% for the four pollutants. The "criteria" 
benchmarks of NMB for NO2, SO2, PM10, and CO are <±30%, <±50%, 
<±40% and <±60%. The "criteria" benchmarks of NME for the four 
pollutants are <55%, <70%, <55% and <65%, respectively. The 

findings of this study are part of a broader effort to establish quantitative 
and objective performance benchmarks for air quality modelling in 
China. By focusing on primary pollutants and introducing additional 
benchmarks for key indicators, this study contributes to the develop
ment of a more comprehensive evaluation system. It fills the gap in 
China’s AQMs benchmark for primary criteria pollutants. These per
formance benchmarks serve as a valuable tool for researchers to identify 
any discrepancies between their simulation results and expected out
comes from other studies. In cases where a significant gap exists, re
searchers can then investigate the reasons behind the disparities, such as 
the accuracy of emission inventory. Moreover, these benchmarks play a 
vital role in building confidence in the base case simulation results. 
These results are used to evaluate the effectiveness of emission reduction 
policy for the purpose of air quality management and planning, of which 
the ultimate goal is to protect public health and the environment. 

CRediT authorship contribution statement 

Hehe Zhai: performed the data analysis and prepared the manu
script with contributions from all co-authors, collected data and con
ducted data analysis. Ling Huang: performed the data analysis and 
prepared the manuscript with contributions from all co-authors. Chris 
Emery: contributed to academic discussions and review. Xinxin Zhang: 
collected data and conducted data analysis. Yangjun Wang: contrib
uted to academic discussions and review. Greg Yarwood: contributed to 
academic discussions and review. Joshua S. Fu: contributed to aca
demic discussions and review. Li Li: formulated the research goals and 
edited the manuscript. 

Declaration of competing interest 

The authors declare that they have no conflict of interest. 

Data availability 

Data will be made available on request. 

Acknowledgement 

This study was financially sponsored by the National Natural Science 
Foundation of China (No. 42005112, 42075144, 42375102). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.atmosenv.2023.120290. 

Fig. 6. Rank-ordered distributions of R, NMB, and NME for NO2, SO2, PM10, and CO. The number of data points and the 33rd, 50th, and 67th percentile values are 
also listed. 

Table 1 
Recommended benchmarks for evaluating AQM applications in China for NO2, 
SO2, PM10, and CO.  

Metrics Benchmark level NO2 SO2 PM10 CO 

R Goal >0.60 >0.55 >0.60 >0.60 
Criteria >0.50 >0.35 >0.45 >0.40 

NMB Goal <±20.0% <±25.0% <±20.0% <±25.0% 
Criteria <±30.0% <±50.0% <±40.0% <±60.0% 

NME Goal <40.0% <45.0% <45.0% <60.0% 
Criteria <55.0% <70.0% <55.0% <65.0%  
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