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H I G H L I G H T S  

• Impacts from four PBL schemes within WRF on the simulation of air pollutants are evaluated over the YRD region. 
• Seasonal and diurnal variations of surface pollutant concentrations are predicted and discussed. 
• The MYNN scheme shows good performance for PM2.5 and NO2, while the YSU scheme is most suitable for O3 prediction in the YRD. 
• Implementing a single PBL scheme for a large area with complex topography is insufficient.  
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A B S T R A C T   

The city clusters in eastern coastal China have suffered from serious air pollution in the past decades, which is 
partially related to the complex local topography and meteorological conditions. The planetary boundary layer 
(PBL) scheme is a critical parameter for accurate meteorology simulations and air quality predictions. In this 
study, we analyze the impact of four typical PBL schemes, namely, Yonsei University (YSU), Mellor-Yamada- 
Nakanishi-Niino Level 2.5 (MYNN), Asymmetric Convective Model version 2 (ACM2), and Mellor-Yamada- 
Janjic (MYJ) PBL, within the Weather Research and Forecasting (WRF) model to assess their impacts on the 
simulations of air pollutant concentrations based on the Comprehensive Air Quality Model with Extensions 
(CAMx) for the Yangtze River Delta (YRD) region, one of the most developed city clusters in eastern China. The 
results indicate that the MYNN scheme performs best in terms of fine particulate matter (PM2.5) and nitrogen 
dioxide (NO2) simulations, with mean bias of 4.8 μg m− 3 and 9.3 μg m− 3 in summer and 11.7 μg m− 3 and 5.4 μg 
m− 3 in winter, respectively. The YSU scheme performs best for ozone (O3) prediction, with better simulation 
results in summer than in winter. Notably, some discrepancies among different PBL schemes in the prediction of 
air pollution are directly associated with the complex topography. For the prediction of PM2.5, the MYJ and YSU 
schemes tend to overestimate the concentrations in the plains of Jiangsu and northern Anhui while under
estimating PM2.5 in the hilly areas compared with the MYNN scheme. Meanwhile, the performance of the ACM2 
scheme is opposite to that of the MYJ and YSU schemes. For O3 predictions, MYJ overestimates O3 in the eastern 
coastal area and underestimates O3 in the inland areas in summer compared with the YSU scheme, while the 
ACM2 scheme is the opposite of the MYJ scheme, and the MYNN scheme consistently overestimates O3.   

1. Introduction 

Due to rapid industrialization and urbanization in recent decades, 

China has faced serious air pollution challenges (Chen et al., 2020; Fan 
et al., 2019). Surface air pollutant mixing ratios can be determined by 
various processes, such as emissions, transport and dispersion, chemical 
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transformation, and dry and wet deposition (He et al., 2018; Hu et al., 
2015; Jiang et al., 2015; Zhai et al., 2019; Zu et al., 2017). These pro
cesses are typically dependent on meteorological conditions, which are 
greatly influenced by the planetary boundary layer (PBL) structures. 
Previous studies have indicated that PM2.5 concentrations are negatively 
influenced by temperature (T), wind speed (WS), and the planetary 
boundary layer height (PBLH), and positively influenced by absolute 
humidity in most regions of China (Shi et al., 2020). The response of the 
ozone mixing ratio to temperature is a critical factor, and it is sensitive to 
the ozone formation mechanism or loss regime (Guicherit and Van Dop, 
1977; He et al., 2018; Racherla and Adams, 2006). Therefore, the 
robustness of weather forecasts, typically using the WRF model, directly 
affects the performance of the subsequent air quality models (Storm and 
Basu, 2010; Zu et al., 2017). For instance, the exchange of moisture, 
heat, and momentum occurs within the PBL through mixing via turbu
lent eddies (Coniglio et al., 2013; Fountoukis et al., 2018), which can 
influence lower-tropospheric thermodynamics and kinematics (Holtslag 
and Moeng, 1964). Therefore, varying the selection of PBL schemes in 
the WRF model could have a significant influence on the simulated 
meteorological conditions and further affect the predictions of air 
pollution (André et al., 1978; Banks et al., 2016). 

The PBL scheme includes both local and non-local closure schemes. 
For local closure schemes, only those vertical levels directly adjacent to 
a given site have a direct effect on the variables at a particular point 
(Ching et al., 2014). However, multiple vertical levels can be used to 
determine variables at a given point in non-local closure schemes 
(Stensrud, 2007). Previous studies have indicated that the simulation 
results under various PBL schemes for different types of pollutants in the 
same area could vary, while the performance also differs spatially and 
temporally (Chen et al., 2008; Li et al., 2020; Mao et al., 2006, 2006, 
2006; Onwukwe and Jackson, 2020; Storm and Basu, 2010; Žabkar 
et al., 2013). Compared with simulations in a relatively large domain, 
PBL schemes are more sensitive to air quality in urban areas. A robust 
simulation of meteorological conditions is the foundation for accurate 
air quality modeling (Onwukwe and Jackson, 2020; Wang et al., 2015). 
Therefore, the choice of an appropriate boundary layer parameteriza
tion scheme has a significant influence on the simulation of the 
boundary layer structure, turbulence characteristics, and meteorological 
variables, which would further affect the performance of atmospheric 
modeling. 

The YRD region is in the northern marine monsoon subtropical 
climate zone of southeast China, which is a well-developed city cluster. 
The topography of the YRD region is complicated, with mountains in the 
western and southern areas and adjacent to the ocean in the eastern 
region. In addition, the YRD region is in a transection area between the 
northern and southern parts of the country, with complicated meteo
rological conditions. Previous modeling studies have reported varying 
degrees of overestimation or underestimation of PM2.5 and O3 over the 
YRD region (Cheng et al., 2013; Fu et al., 2014; Huang et al., 2020; Li 
et al., 2018, 2020), which is partially associated with the bias of the 
meteorological parameters. Therefore, it is necessary to explore the in
fluences of different boundary layer parameterization schemes on air 
quality predictions (including spatial and temporal differences) in the 
YRD region. In a parallel study , we assessed the results of four 
commonly used PBL schemes (YSU, ACM2, MYJ, and MYNN) to repro
duce the meteorological variables in different seasons and evaluated 
their performance. In the current study, the main objective is to examine 
the impact of PBL schemes on regional air quality predictions. We 
evaluated the overall performance of the air quality model across 
monitoring stations and identified the most suitable PBL schemes for 
predicting air pollutants seasonally. The impact of PBL schemes on 
various terrains in the YRD region is also discussed. In addition, the 
seasonal and diurnal variations in air pollutants under the correspond
ing PBL schemes are also presented. This study evaluates the impacts of 
different PBL schemes in air quality models and discusses the appro
priate parameter implementations, providing insights for further 

regional air quality simulations. 

2. Methodology 

2.1. Model configuration 

An integrated modeling system comprising the Weather Research 
and Forecasting (WRF) model (version 4.0; https://www.mmm.ucar.ed 
u/wrf-model-general) and the Comprehensive Air Quality Model with 
Extensions (CAMx) version 7.0 (http://www.camx.com/), was used to 
evaluate the role of PBL parameterization in air quality simulations. The 
gaseous and aerosol modules used in CAMx are the carbon bond (CB6) 
photochemical gas-phase mechanism (Yarwood et al., 2010) and the 
static two-mode coarse/fine (CF) PM chemistry option with ISORROPIA 
(Nenes et al., 1998). The aqueous-phase chemistry is based on the 
updated mechanism of the regional acid deposition model (RADM) 
(Chang et al., 1987). Three nested domains (Fig. 1.) are used where 
Domain 1 (D01) covers China, Japan, the Korean Peninsula, parts of 
India, and Southeast Asia with a grid spacing of 36 km; Domain 2 (D02) 
covers the eastern part of China with 12-km grid spacing and the inner 
domain (D03) covers the YRD region (Shanghai, Jiangsu, Zhejiang, 
Anhui provinces) and parts of surrounding areas with a grid spacing of 4 
km × 4 km. The WRF meteorological modeling domain consists of three 
nested Lambert projection grids of 36, 12, and 4 km, with three grids 
larger than the CAMx modeling domain at each boundary. The WRF 
model is run simultaneously for the three nested domains with two-way 
feedback between the parent and nest grids, where all three domains 
utilize 39 vertical sigma layers, with the top layer at 50 hPa. 

The initial and boundary conditions (IC/BCs) for the WRF modeling 
system are based on global final analysis (FNL) operational global 
analysis data with a 1◦ × 1◦ grid archived at the Global Data Assimila
tion System. The BCs were updated at 6-h intervals for D01. In addition, 
the NOAH land surface scheme (Chen and Dudhia, 2001) was used to 
describe the land-atmosphere interactions, the Purdue-Lin microphysics 
scheme (Lin et al., 1983) was chosen to reproduce the cloud and pre
cipitation processes, and the Rapid Radiative Transfer Model (RRTM) 
long-wave and Goddard Short-wave radiation schemes (Mlawer et al., 
1997) were adopted to reflect the radiation. 

In this study, anthropogenic emissions in China and other Asian re
gions were obtained from the 2017 Multi-resolution Emission Inventory 
of China (MEIC, http://www.meicmodel.org) developed by Tsinghua 
University and the 2010 Emissions Database for Global Atmospheric 
Research (EDGAR) emission inventory, respectively. The biogenic 
emissions were calculated using the updated Model of Emissions of 
Gases and Aerosols from Nature (MEGAN, v3.1, http://aqrp.ceer.utexas. 
edu/projects.cfm). Sea salt emissions were simulated using the 
OCEANIC pre-processor developed by Ramboll (http://www.camx. 
com/download/support-software.aspx), and the Sparse Matrix Oper
ator Kernel Emissions (SMOKE, https://www.cmascenter.org/smoke) 
model was used to process emissions into the format required by the 
model. The simulation for the present study was based on summer (July) 
and winter (November) of 2018, and a five-day spin-up period was 
considered to mitigate the impact of the initial simulation conditions. 

2.2. PBL parameterization 

The PBL scheme is used to describe the vertical fluxes of heat, mo
mentum, and moisture due to eddy transport within the entire atmo
spheric column in turbulent processes (Banks and Baldasano, 2016). 
One major component of the turbulence processes is whether a local or 
non-local mixing approach is employed. The local closure schemes 
obtain the turbulent fluxes using the mean variables and their gradients 
at each model grid, whereas the non-local closure schemes use multiple 
vertical levels and profiles of the convective boundary layer to deter
mine the variables (Temimi et al., 2017). To date, 12 PBL schemes have 
been applied to the WRF model, and four of the most commonly used 

L. Shi et al.                                                                                                                                                                                                                                       

https://www.mmm.ucar.edu/wrf-model-general
https://www.mmm.ucar.edu/wrf-model-general
http://www.camx.com/
http://www.meicmodel.org
http://aqrp.ceer.utexas.edu/projects.cfm
http://aqrp.ceer.utexas.edu/projects.cfm
http://www.camx.com/download/
http://www.camx.com/download/
https://www.cmascenter.org/smoke


Atmospheric Environment 263 (2021) 118685

3

schemes (two local closure and two non-local closure schemes) have 
been selected to investigate their impacts on the air quality model per
formance in the current study (Table 1). 

The YSU PBL scheme is a first-order non-local closure scheme. 
Revised from the Medium-Range Forecast (MRF) scheme, the significant 
improvement in YSU is the addition of an explicit term for the treatment 
of the entrainment process at the top (Jia and Zhang, 2020). Compared 
with MRF, the YSU scheme has more boundary layer mixing under 
thermally induced free convection conditions and less boundary layer 
mixing under mechanically induced forced convection conditions. The 
ACM2 scheme (Pleim, 2007) is a combination of ACM1, which adds an 
eddy diffusion component to the non-local transport. It calculates the 
PBL height using a critical bulk Richardson number of 0.25, similar to 
the YSU scheme. ACM2 was designed to better represent the shape of the 
vertical profiles, which could be more applicable to humidity, wind, or 
trace chemical mixing ratios in the boundary layer scheme. The MYJ 
scheme (Janjić and Zaviša, 1990) is a one-and-half-order local turbu
lence closure scheme. It diagnoses the vertical mixing process in PBL and 
free atmosphere by forecasting the TKE, combined with the additional 
prognostic equation of the TKE. The MYNN scheme is a 
one-and-half-order local closure scheme, which considers the effects of 
buoyancy on the diagnosis of the pressure covariance terms. It uses 
closure constants in the stability functions and mixing length formula
tions that are based on large eddy simulation results rather than 
observational datasets. 

2.3. Observation data 

The evaluation of meteorological prediction based on the WRF 

model and further study regarding the impact of various PBL schemes on 
meteorological simulation are presented in our companion study. In this 
work, we focus on the evaluation of air quality simulations using the 
CAMx model implemented with different PBL schemes. 

To validate the air quality simulations, we used hourly surface ob
servations of the major air pollutants (i.e., O3, NO2, SO2, and PM2.5) 
from the Ministry of Ecology and Environment of the People’s Republic 
of China (http://datacenter.mep.gov.cn). As shown in Fig. 1, the 
pollution monitoring network over the YRD region consists of 41 
monitoring stations distributed across 41 cities. 

Statistical indices were applied to quantitatively assess the model 
performance, including the mean bias (MB), normalized mean bias 
(NMB), root-mean-square error (RMSE), fractional bias (FB), and index 
of agreement (IOA) (Huang et al., 2021). The equations for the selected 
indices for performance evaluation are listed in Table S1. 

3. Results and discussions 

3.1. Evaluation of WRF meteorology 

Meteorological variables from the WRF are significant drivers of 
CAMx air quality simulations. The 2-m air temperature (T2), 10-m wind 
speed (WS10), and relative humidity (RH) are critical variables for 
precise simulations. More details about the validation of meteorological 
variables can be found in our parallel work. 

Tables S2 and S3 list the MB, RMSE, and R values for the WRF- 
simulated meteorological factors compared with the observations at 
the four airport stations in the YRD region. In brief, most of the PBL 
schemes underestimate the 2-m temperature in summer (− 0.06–0.24 ◦C 
for July), while all four PBL schemes overestimate the 2-m temperature 
in winter (0.17–0.52 ◦C for November). All four PBL schemes over
estimate 10-m WS (0.29–1.47 m/s for July; 0.25–0.66 m/s for 
November) but underestimate the RH (− 4.0% to − 5.86% for July; 
− 5.86% to − 11.03% for November). It should be noted that the over
estimation of WS in summer was higher than that in winter. While the 
overall WRF works well for meteorology simulations, the performance 
of the four PBL schemes provides different indications. 

3.2. Air quality evaluation 

The predicted spatial distributions of the major air pollutants are 
shown in Fig. 2. In general, the monthly average concentrations of these 
air pollutants are consistent with the observations. The simulation 

Fig. 1. Three nested modeling domain and locations of the national observational stations (blue triangle) and meteorological stations (dark dot). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Four PBL schemes evaluated in this study.  

PBL 
scheme 

Name Closure PBL height method 

YSU Yonsei University non-local Rib (bulk Richardson 
number) calculated from 
surface 

MYNN Mellor-Yamada- 
Nakanishi-Niino Level 
2.5 

local turbulent kinetic energy 
(TKE)-prescribed threshold 

ACM2 Asymmetric 
Convective Model 
version 2 

Hybrid local- 
non-local 

Rib calculated above 
neutral buoyancy level 

MYJ Mellor-Yamada-Janjic local TKE-prescribed threshold  
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results in July are generally better than those in November. Specifically, 
the PM2.5, SO2, and NO2 concentrations are higher in winter and lower in 
summer, but O3 exhibits an opposite trend to that of PM2.5. This is pri
marily due to the different meteorological conditions in summer and 
winter occurring in the monsoon zone. In addition, the observed PM2.5 
concentration generally demonstrates a decreasing trend from north to 
south of the YRD, while the O3 concentration decreases from northwest 
to southeast in July, which was well captured by the model. The high 
concentrations of SO2 and NO2 are predominantly concentrated in the 
middle region of the YRD, and the simulation agreed well with the 
observations. 

Fig. 3 presents the comprehensive statistical evaluation parameters 
between the observations and predictions of key pollutants at 41 na
tional stations (corresponding to 41 cities) in the YRD region in July and 
November 2018. Based on the MB results, the performance of PM2.5 and 
SO2 simulation in July have better MB values of 4.8 μg m− 3 and − 0.4 μg 
m− 3, while O3 and NO2 are somewhat overestimated. However, all the 
pollutants except SO2 were overestimated in November. Based on the 
IOA evaluation, O3 is the highest, which is close to 0.7, followed by 
PM2.5, and NO2. Furthermore, our results demonstrate that the stations 
in Shanghai and Hangzhou have the best simulation of PM2.5 and O3 in 
July, with both the MB and NMB equal to zero (Table S4 and Table S5). 

The model performances of the four PBL schemes differ from each 
other. The MYNN scheme achieved the best model simulation perfor
mance for PM2.5, with an NMB of 20% in July, followed by SO2 (NMB of 
6%) and NO2 (NMB of 59%), while the simulation results for O3 (NMB of 
33%) are the worst. Previous studies have clearly indicated that the local 
closure scheme is more suitable for the simulation of haze events (Li 
et al., 2016; Román-Cascón et al., 2012). Onwukwe and Jackson (2020) 
determined that the fully local MYJ and semi-local MYNN3 PBL schemes 
can more reasonably reproduce the peak-season concentrations of PM2.5 
and NO2 than other schemes over a fjord valley. The second-order 
closure scheme (MYNN3) can more accurately portray deeper mixed 
layers compared with the MYNN scheme and reasonably depicts stati
cally stable boundary layer simulations supporting radiation fog devel
opment (Nakanishi and Niino, 2006). Meanwhile, the MYNN scheme 
could improve the PBL depiction over non-local PBL schemes for 

springtime PBLs that support deep convection (Coniglio et al., 2013). 
The expressions of stability and mixing length by the MYNN scheme are 
based on the results of large eddy simulations rather than observations, 
while the expressions of mixing length are more applicable to a variety 
of static stability regimes (Mellor and Yamada, 1974, 1982). Therefore, 
the MYNN scheme is more likely to predict lower concentrations of 
near-surface air pollutants and perform better than non-local closure 
schemes under stable boundary layer conditions (Hu et al., 2013; Jia and 
Zhang, 2020). 

Regarding the simulation of O3, the YSU scheme performs better than 
MYNN, which is different from the results for PM2.5. The O3 mixing ratio 
has significant diurnal variations, with common peak concentrations 
observed in the afternoon. Furthermore, turbulence also normally rea
ches its peak between 12:00 and 14:00 (Yamada and Mellor, 1975) with 
the PBLH reaching its maximum. Therefore, O3 is often affected by 
strong turbulence. However, the YSU scheme increases the 
buoyancy-driven vertical mixing and decreases the mechanically driven 
mixing, which alleviates the problems in the MRF scheme (Hong et al., 
2005); therefore, it is more suitable for the simulation of pollutants 
under unstable conditions. Similarly, Cheng et al. (2012) also found that 
temperature, WS, and O3 concentration simulated by the YSU scheme 
are closer to the observed daytime values, while the MYJ scheme is 
preferred at nighttime. 

3.3. Effect of meteorological variables and PBLH on air pollution 
prediction 

The PBL scheme affects the air quality simulation by influencing the 
meteorological parameters and boundary layer height derived from the 
WRF. Generally, the accumulation of pollutants is accompanied by 
higher RH, calm surface winds, low boundary layer height, and stronger 
anomalous temperature inversion within the PBL (John P. Dawson et al., 
2007; J. P. Dawson et al., 2007; Shi et al., 2020). As shown in Figs. 4–7, 
the spatial differences in pollutant concentrations among the various 
schemes are primarily affected by the combination of meteorological 
parameters and the PBLH. However, our study did not analyze which 
parameter had the greatest impact on the difference in detail due to the 

Fig. 2. Mean simulated (shaded) and observed (circles) concentrations of major air pollutants simulated by MYNN scheme in July and November 2018.  
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Fig. 3. Statistical model evaluation indices in 41 cities of the YRD region in July (a–d) and November (e–h) 2018.  
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complexity. In order to find the relationships between meteorological 
parameters and pollutants, we took the Shanghai station as an example 
(Fig. 8), finding that PM2.5 and O3 are positively correlated with tem
perature and negatively correlated with WS, while the influence of RH 

was weak. However, the potential effect of the PBLH on pollutant con
centrations cannot be ignored. 

In our parallel study, MYNN performed better for meteorological 
variables than the other three schemes in summer, while MYJ provides 

Fig. 4. Spatial bias of surface meteorological variables and pollutants, including RH, WS, T2, PBLH, and PM2.5, in July. a–e display the bias between ACM2 and 
MYNN (ACM2-MYNN), f–j present the bias between MYJ and MYNN (MYJ-MYNN), and k–o show the bias between YSU and MYNN (YSU-MYNN). 

Fig. 5. Spatial bias of surface meteorological variables and pollutants, including RH, WS, T2, PBLH, and PM2.5, in November. a–e demonstrate the bias between 
ACM2 and MYNN (ACM2-MYNN), f–j display the bias between MYJ and MYNN (MYJ-MYNN), and k–o present the bias between YSU and MYNN (YSU-MYNN). 
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Fig. 6. Spatial bias of surface meteorological variables and pollutants, including RH, WS, T2, PBLH, and O3, in July. a–e present the bias between ACM2 and MYNN 
(ACM2-MYNN), f–j display the bias between MYJ and MYNN (MYJ-MYNN), and k–o provide the bias between YSU and MYNN (YSU-MYNN). 

Fig. 7. Spatial bias of surface meteorological variables and pollutants including RH, WS, T2, PBLH, and O3, in November. a–e show the bias between ACM2 and 
MYNN (ACM2-MYNN), f–j display the bias between MYJ and MYNN (MYJ-MYNN), and k–o illustrate the bias between YSU and MYNN (YSU-MYNN). 
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better simulations in winter for the YRD region. Comparisons of the 
PBLH reveal that except for ACM2, the other three PBL schemes 
demonstrate various degrees of underestimation in summer (Fig. 9a). 
With the largest PBLH underestimation from the MYJ scheme and the 
best performance of the MYNN scheme, MYJ produced the largest 
overestimation of PM2.5, while MYNN performed the best for PM2.5 
predictions. In November, the MYNN scheme simulated the highest 
PBLH (Fig. 5) but the lowest PM2.5 concentration. Although the ACM2 
scheme exhibits lower humidity and higher temperature/WS than the 
MYNN scheme, the predicted PM2.5 concentration is still higher than 
that of the MYNN scheme. Therefore, the high deviation of PBLH has a 
great influence on the simulation of PM2.5 compared with other mete
orological variables. However, the O3 results demonstrate characteris
tics that differ from those of PM2.5. The YSU scheme exhibited the best 

simulation performance for O3. Taking the YSU scheme as the bench
mark, the O3 concentration was overestimated when the PBLH was also 
overestimated, which may be because O3 is affected by the PBLH, while 
temperature, WS, and boundary layer inversion also play a key role. 

3.4. Diurnal variations driven by four PBL schemes 

The diurnal variations of meteorological variables and pollutants in 
July and November with the four PBL schemes are presented in Fig. 10, 
which clearly shows how the PBL schemes can affect the simulation of 
the diurnal cycle of PM2.5 and O3. The peak PM2.5 (Fig 10a, f) occurs in 
the morning due to the combined effects of traffic emissions during rush 
hour and a low PBLH. At noon, the PM2.5 concentration drops mainly 
because of the highest boundary layer and the strongest vertical tur
bulent mixing. The simulation of diurnal PM2.5 exhibited significant 
differences with the different PBL schemes, and the MYNN scheme 
performed better overall, especially for the meteorological variables 
(Fig. 10). In detail, the MYNN scheme provides a noticeable over
estimation during the day in July and underestimation in November 
compared with the other schemes, which is primarily caused by the 
PBLH. Because the differences in the meteorological variables among 
the schemes are small, but the differences in boundary layer height are 
large (Fig. 9), the influence of the boundary layer height on pollutant 
concentration is greater than that of the meteorological variables. In 
general, the MYNN scheme performed better at night. The MYNN 
scheme is a local closure scheme, which is typically used to calculate 
mixing throughout the vertical extent of the model domain from the 
surface through the PBL and upwards to the top of the model. 

Similarly, the diurnal O3 trend simulated by each scheme was also 
investigated. (Fig 10b, g). The O3 concentration reaches its peak in the 
afternoon, which is predominantly produced by photochemical re
actions during the highest daily temperatures. In July, the simulation of 

Fig. 8. Scatter diagrams of the relationship between the meteorological variable biases (△T2, △WS, △RH) and PM2.5 and O3 biases (PBL schemes – obs) at 
Shanghai station. 

Fig. 9. Time series of daytime PBLH simulations and hourly average from lidar 
in July (a) and November (b). 
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O3 in the daytime is typically overestimated and underestimated at 
night, while it mainly shows overestimation during the daytime in 
November. The simulation of O3 by the MYNN and MYJ schemes usually 

showed the highest concentrations. In contrast, the O3 concentration 
obtained by the YSU scheme was relatively low. There was little dif
ference in the simulated diurnal variations among the different schemes. 

Fig. 10. Diurnal variations of the four PBL schemes for the meteorological variables (T2, WS, RH) and pollutants (PM2.5, O3) in the YRD region, including July (a–e) 
and November (f–j). 

Table 2 
Simulation differences of PM2.5 (μg m− 3) and O3 (μg m− 3) in different terrains of various PBL schemes in July and November. The Yangzhou, Yancheng, Jinhua and 
Huangshan stations represent plains, coastal/plains, hilly/coastal, and hilly, respectively.    

terrain sim_MYNN MB_MYNN MYJ-MYNN ACM2-MYNN YSU-MYNN 

PM2.5 July plains 52.55 − 3.20 10.92 − 4.16 2.74 
coastal/plains 17.57 5.10 4.60 − 0.94 0.23 
hilly/coastal 29.07 7.40 − 3.58 2.43 − 1.62 
hilly 13.82 5.60 − 0.97 − 0.81 − 0.41 

November plains 114.66 − 12.50 38.65 29.96 28.54 
coastal/plains 42.55 26.80 13.09 12.46 16.23 
hilly/coastal 65.98 31.90 8.55 6.13 8.41 
hilly 31.31 9.60 2.09 5.75 4.64    

sim_YSU MB_YSU MYJ-YSU ACM2-YSU MYNN-YSU 
O3 July plains 120.93 10.20 10.98 − 7.97 3.17 

coastal/plains 71.77 19.80 9.01 − 1.52 9.20 
hilly/coastal 75.24 8.20 0.12 0.80 5.54 
hilly 83.28 0.00 0.38 1.60 2.10 

November plains 84.61 1.40 1.30 2.06 8.25 
coastal/plains 78.98 31.80 3.87 4.33 13.72 
hilly/coastal 77.51 28.10 1.06 1.59 5.51 
hilly 85.53 10.20 2.44 0.65 5.79  
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3.5. Seasonal and spatial differences of the four PBL schemes 

Based on the overall performance, the MYNN and YSU schemes were 
used as the basis for the PM2.5, and O3 analysis, respectively. First, we 
evaluated the spatial differences between the MYNN scheme (base) and 
the other PBL schemes for the prediction of the meteorological variables 
and PM2.5 (Figs. 4 and 5, and Table 2). 

The main topography of the YRD region can be characterized as the 
Zhejiang slopes in a stepped pattern from southwest to northeast, with 
mountains and hills dominating the southwest and middle regions, and a 
flat alluvial plain in the northeast (Fig. S3). Moreover, the topography of 
Anhui Province from north to south changes from plains to mountains. 
Jiangsu and Shanghai are relatively flat plains. We found that the PBL 
schemes exhibit different performances for different types of terrain. 
According to the bias error, the MYJ and YSU schemes mostly over
estimate PM2.5 in the plains of Jiangsu and northern part of Anhui, while 
underestimating the PM2.5 level in the hilly areas of southern Anhui and 
Zhejiang, which are better than the July simulation results from the 
MYNN scheme. The ACM2 scheme primarily overestimates the con
centrations in the coastal hilly region (Fig. 4 and Table 2). In winter, 
compared with the MYNN scheme, the other three schemes are all 
overestimated, which is likely due to the low transport capacity caused 
by the decrease in the PBLH and low turbulence during the cold weather 
in winter (Fig. 5). Similar to those in summer, the MYJ and YSU schemes 
also exhibited overestimation trends in the plains in winter. According 
to the spatial differences of the meteorological variables and pollutant 
types between the various schemes, the overestimation and underesti
mation of pollutants have no significant correlation with a particular 
variable, which is predominantly because the pollutant simulation is the 
result of interactions with the meteorological parameters, PBLH, and 
turbulence. 

Similarly, the O3 predictions were also analyzed (Figs. 6 and 7 and 
Table 2). The spatial difference in O3 is quite different from that of 
PM2.5. The ACM2 simulation typically performed better for O3 in the 
plains of Jiangsu Province and coastal hilly region, while an over
estimation is evident in the hilly areas of Anhui and Zhejiang in July 
(Fig. 6). Because the YSU scheme overestimates O3 slightly, the ACM2 
scheme has relatively good simulation results for the plains, but dem
onstrates a less precise prediction for the hilly area. The MYJ scheme 
overestimates O3 in the eastern coastal area and underestimates it in the 
inland areas in summer, which is the opposite to that of the ACM2 
scheme. Compared with the other three schemes, the MYNN scheme 
presented the worst performance in O3 predictions. 

Seasonally, the concentration of O3 in winter is generally lower than 
that in summer because of the lower temperature and weak solar radi
ation. Our results indicate that O3 in winter could be overestimated 
(Fig. 3). Overall, the simulation performance of the YSU scheme is the 
best, but it is still overestimated with a spatial difference of the bias 
similar to that predicted in summer. From these analyses, it can be 
concluded that an individual scheme has limited simulation ability for a 
large area with a complex topography. A modeling study is preferred for 
a relatively uniform topographic area to further improve the simulation 
accuracy of a PBL scheme. Otherwise, proper PBL schemes should be 
chosen considering the focused area, seasons, or pollutants. For large- 
scale area simulations, different PBL schemes can still reflect the vari
ations in the simulation performance, and a relatively suitable PBL 
scheme can be recommended based on the evaluation results of the 
current study. 

4. Conclusions 

To explore the impacts of different PBL schemes on air quality sim
ulations, four PBL schemes (YSU, MYJ, MYNN, and ACM2) were applied 
to the WRF-CAMx modeling system to predict the air quality in the YRD 
region. The results indicate that there are significant variations among 
the PBL schemes owing to mechanistic differences. From the overall 

simulation results of the YRD region, although there is little difference in 
the simulated concentrations among all the schemes, the most suitable 
scheme could still be identified. For instance, the MYNN scheme is most 
suitable for PM2.5 and NO2 predictions, while the YSU scheme has the 
best performance for O3 predictions, and there is little difference in the 
SO2 simulations among all the schemes for the months of July and 
November in the YRD. In terms of temporal variations, we found that 
large differences were predominantly reflected in the concentrations of 
pollutants, and there was no significant difference in the temporal var
iations produced by the four PBL schemes. Comparing the results from 
different seasons, the simulation performances from the schemes were 
more consistent over the YRD region, where the results for July are even 
better than those for November. The diurnal variation trends were 
consistent across all the schemes, where the differences in concentration 
among the schemes were smaller during the day than during the night. 
Regarding spatial differences, the PBL schemes demonstrated different 
performances in different terrains. The results indicate that the simu
lations of PM2.5 by the MYJ and YSU schemes primarily overestimate the 
plain areas in Jiangsu and northern Anhui while producing better per
formances over the hilly areas in the southern part of Anhui and Zhe
jiang compared with the MYNN scheme. For the simulation of O3, the 
ACM2 scheme typically performed better in the plains of Jiangsu 
Province and coastal hilly region while overestimating the hilly areas of 
Anhui and Zhejiang. Meanwhile, the results from the MYJ scheme 
demonstrated an opposite trend to that of the ACM2 scheme. The MYNN 
scheme is the worst for O3 predictions compared with the other PBL 
schemes. From these analyses, it can be concluded that an individual 
scheme has a limited simulation ability for a large area with a complex 
topography. A modeling study is preferred for a relatively uniform 
topographic area to further improve the simulation accuracy of a PBL 
scheme. 
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André, J.C., De Moor, G., Lacarrère, P., Du Vachat, R., 1978. Modeling the 24-hour 
evolution of the mean and turbulent structures of the planetary boundary layer. 
J. Atmos. Sci. 35 (10), 1861–1883. 

L. Shi et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.atmosenv.2021.118685
https://doi.org/10.1016/j.atmosenv.2021.118685
http://refhub.elsevier.com/S1352-2310(21)00507-0/sref1
http://refhub.elsevier.com/S1352-2310(21)00507-0/sref1
http://refhub.elsevier.com/S1352-2310(21)00507-0/sref1


Atmospheric Environment 263 (2021) 118685

11

Banks, R.F., Baldasano, J.M., 2016. Impact of WRF model PBL schemes on air quality 
simulations over Catalonia, Spain. Sci. Total Environ. 572, 98–113. https://doi.org/ 
10.1016/j.scitotenv.2016.07.167. 

Banks, Robert F., Tiana-Alsina, J., Maria Baldasano, J., Rocadenbosch, F., 
Papayannis, A., Solomos, S., Tzanis, C.G., 2016. Sensitivity of boundary-layer 
variables to PBL schemes in the WRF model based on surface meteorological 
observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos. Res. 
176–177 jul.-au), 185–201.  

Chang, J.S., Brost, R.A., Isaksen, I.S.A., et al., 1987. A three-dimensional Eulerian acid 
deposition model: Physical concepts and formulation. J. Geophys. Res. Atmos. 92, 
14681–14700. https://doi.org/10.1029/JD092iD12p14681. 

Chen, F., Dudhia, J., 2001. Coupling an advanced land surface–hydrology model with the 
penn state–NCAR MM5 modeling system. Part I: model implementation and 
sensitivity. Mon. Weather Rev. 129 (4), 569–585. 

Chen, J., Vaughan, J., Avise, J., O’Neill, S., Lamb, B., 2008. Enhancement and evaluation 
of the AIRPACT ozone and PM2.5 forecast system for the Pacific Northwest. 
J. Geophys. Res. 113 (D14), D14305. https://doi.org/10.1029/2007JD009554. 

Chen, C., Zhang, H., Li, H., Wu, N., Zhang, Q., 2020. Chemical characteristics and source 
apportionment of ambient PM1.0 and PM2.5 in a polluted city in North China plain. 
Atmos. Environ. 242, 117867. https://doi.org/10.1016/j.atmosenv.2020.117867. 

Cheng, F.Y., Chin, S.C., Liu, T.H., 2012. The role of boundary layer schemes in 
meteorological and air quality simulations of the Taiwan area. Atmos. Environ. 54 
(Jul), 714–727. 

Cheng, Z., Wang, S., Jiang, J., Fu, Q., Chen, C., Xu, B., et al., 2013. Long-term trend of 
haze pollution and impact of particulate matter in the Yangtze River Delta, China. 
Environ. Pollut. 182, 101–110. https://doi.org/10.1016/j.envpol.2013.06.043. 

Ching, J., Rotunno, R., Lemone, M., Martilli, A., Kosovic, B., Jimenez, P.A., Dudhia, J., 
2014. Convectively induced secondary circulations in fine-grid mesoscale numerical 
weather prediction models. Mon. Weather Rev. 142 (9), 3284–3302. 

Coniglio, M.C., Correia, J., Marsh, P.T., Kong, F., 2013. Verification of convection- 
allowing WRF model forecasts of the planetary boundary layer using sounding 
observations. Weather Forecast. 28 (3), 842–862. 

Dawson, J.P., Adams, P.J., Pandis, S.N., 2007. Sensitivity of PM2.5 to climate in the 
Eastern US: a modeling case study. Atmos. Chem. Phys. 7 (16). 

Dawson, John P., Adams, P.J., Pandis, S.N., 2007. Sensitivity of ozone to summertime 
climate in the eastern USA: a modeling case study. Atmos. Environ. 41 (7), 
1494–1511. 

Fan, H., Zhao, C., Yang, Y., 2019. A Comprehensive Analysis of the Spatio-Temporal 
Variation of Urban Air Pollution in China during 2014-2018. Atmospheric 
Environment, p. 220. 

Fountoukis, C., Ayoub, M.A., Ackermann, L., Perez-Astudillo, D., Bachour, D., Gladich, I., 
Hoehn, R.D., 2018. Vertical ozone concentration profiles in the arabian gulf region 
during summer and winter: sensitivity of WRF-chem to planetary boundary layer 
schemes. Aerosol and Air Quality Research 18 (5), 1183–1197. https://doi.org/ 
10.4209/aaqr.2017.06.0194. 

Fu, X., Wang, S.X., Cheng, Z., Xing, J., Zhao, B., Wang, J.D., Hao, J.M., 2014. Source, 
transport and impacts of a heavy dust event in the Yangtze River Delta, China, in 
2011. Atmos. Chem. Phys. 14 (3), 1239–1254. https://doi.org/10.5194/acp-14- 
1239-2014. 

Guicherit, R., Van Dop, H., 1977. Photochemical production of ozone in western Europe 
(1971-1975) and its relation to meteorology. Atmos. Environ. 11 (2), 145–155. 

He, H., Liang, X.-Z., Wuebbles, D.J., 2018. Effects of emissions change, climate change 
and long-range transport on regional modeling of future U.S. particulate matter 
pollution and speciation. Atmos. Environ. 179, 166–176. https://doi.org/10.1016/j. 
atmosenv.2018.02.020. 

Holtslag, A.A.M., Moeng, C.H., 1964. Eddy diffusivity and countergradient transport in 
the convective atmospheric boundary layer. J. Atmos. Sci. 48 (14), 1690–1700. 

Hong, S.Y., Noh, Y., Dudhia, J., 2005. A new vertical diffusion package with an explicit 
treatment of entrainment processes. Mon. Weather Rev. 134 (9), 2318. 

Hu, X.-M., Klein, P.M., Xue, M., 2013. Evaluation of the updated YSU planetary boundary 
layer scheme within WRF for wind resource and air quality assessments: impact OF 
vertical mixing ON wind and O3. J. Geophys. Res.: Atmosphere 118 (18). https://doi. 
org/10.1002/jgrd.50823, 10,490-10,505.  

Hu, J., Wu, L., Zheng, B., Zhang, Q., He, K., Chang, Q., et al., 2015. Source contributions 
and regional transport of primary particulate matter in China. Environ. Pollut. 207 
(DEC), 31. 

Huang, L., Wang, Q., Wang, Y., Emery, C., Zhu, A., Zhu, Y., et al., 2020. Simulation of 
Secondary Organic Aerosol over the Yangtze River Delta Region: the Impacts from 
the Emissions of Intermediate Volatility Organic Compounds and the SOA Modeling 
Framework. Atmospheric Environment. https://doi.org/10.1016/j. 
atmosenv.2020.118079, 118079.  

Huang, L., Zhu, Y., Zhai, H., Xue, S., Zhu, T., Shao, Y., Liu, Z., Emery, C., Yarwood, G., 
Wang, Y., Fu, J., Zhang, K., Li, L., 2021. Recommendations on benchmarks for 
numerical air quality model applications in China – Part 1: PM2.5 and chemical 
species. Atmos. Chem. Phys. 21, 2725–2743 https://doi.org/10.5194/acp-21-2725- 
2021.  

Janji, ZaviA, I., 1990. The step-mountain coordinate: physical package. Mon. Weather 
Rev. 118 (7), 1429–1443. 

Jia, W., Zhang, X., 2020. The role of the planetary boundary layer parameterization 
schemes on the meteorological and aerosol pollution simulations: a review. Atmos. 
Res. 239, 104890. https://doi.org/10.1016/j.atmosres.2020.104890. 

Jiang, F., Ling, Z., Guo, H., et al., 2015. Simulation of ozone formation at different 
elevations in mountainous area of Hong Kong using WRF-CMAQ model. Sci. Total 
Environ. 505, 939–951. https://doi.org/10.1016/j.scitotenv.2014.10.070. 

Li, L., An, J., Zhou, M., Qiao, L., Zhu, S., Yan, R., et al., 2018. An integrated source 
apportionment methodology and its application over the Yangtze River Delta region, 
China. Environ. Sci. Technol. 52, 14216–14227. 

Li, R., Wang, Q., He, X., Zhu, S., Yu, J.Z., 2020. Source apportionment of PM2.5 in 
Shanghai based on hourly organic molecular markers and other source tracers. 
Atmos. Chem. Phys. 20 (20), 12047–12061. 

Li, T., Wang, H., Zhao, T., et al., 2016. The Impacts of Different PBL Schemes on the 
Simulation of PM 2.5 during Severe Haze Episodes in the Jing-Jin-Ji Region and Its 
Surroundings in China. Adv. Meteorol. 1–15. https://doi.org/10.1155/2016/ 
6295878. 

Lin, Y.L., Farley, R.D., Orville, H.D., 1983. Bulk parameterization of the snow field in a 
cloud model. J. Appl. Meteorol. 22 (6), 1065–1092. 

Mao, Q., Gautney, L.L., Cook, T.M., Jacobs, M.E., Smith, S.N., Kelsoe, J.J., 2006. 
Numerical experiments on MM5–CMAQ sensitivity to various PBL schemes. Atmos. 
Environ. 40 (17), 3092–3110. https://doi.org/10.1016/j.atmosenv.2005.12.055. 

Mellor, G.L., Yamada, T., 1974. A hierarchy of turbulence closure models for planetary 
boundary layers. J. Atmos. Sci. 31, 1791–1806. 

Mellor, G.L., Yamada, T., 1982. Development of a turbulence closure model for 
geophysical fluid problems. Rev. Geophys. 20, 851–875. 

Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A., 1997. Radiative 
transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for 
the longwave. Journal of Geophysical Research Atmospheres 102 (D14). 

Nakanishi, M., Niino, H., et al., 2006. An Improved Mellor–Yamada Level-3 Model: Its 
Numerical Stability and Application to a Regional Prediction of Advection Fog. 
Boundary-Layer Meteorol. 119, 397–407. https://doi.org/10.1007/s10546-005- 
9030-8. 

Nenes, A., Pandis, S.N., Pilinis, C., 1998. ISORROPIA: a new thermodynamic equilibrium 
model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 4 (1), 
123–152. 

Onwukwe, C., Jackson, P.L., 2020. Evaluation of CMAQ modeling sensitivity to planetary 
boundary layer parameterizations for gaseous and particulate pollutants over a fjord 
valley. Atmos. Environ. 233, 117607. https://doi.org/10.1016/j. 
atmosenv.2020.117607. 

Pleim, J.E., 2007. A combined local and nonlocal closure model for the atmospheric 
boundary layer. Part I: model description and testing. Journal of Applied 
Meteorology & Climatology 46 (9), 1383–1395. 

Racherla, P.N., Adams, P.J., 2006. Sensitivity of global tropospheric ozone and fine 
particulate matter concentrations to climate change. J. Geophys. Res.: Atmosphere 
111 (D24). 

Román-Cascón, C., Yagüe, C., Sastre, M., Maqueda, G., Salamanca, F., Viana, S., 2012. 
Observations and WRF simulations of fog events at the Spanish Northern Plateau. 
Adv. Sci. Res. 8 (1), 11–18. https://doi.org/10.5194/asr-8-11-2012. 

Shi, Z., Huang, L., Li, J., Ying, Q., Zhang, H., Hu, J., 2020. Sensitivity analysis of the 
surface ozone and fine particulate matter to meteorological parameters in China. 
Atmos. Chem. Phys. 20 (21), 13455–13466. https://doi.org/10.5194/acp-20-13455- 
2020. 

Stensrud, D.J., 2007. Parametrization schemes. Keys to understanding numerical 
weather prediction models. Asian J. Res. Chem. https://doi.org/10.1017/ 
CBO9780511812590. 

Storm, B., Basu, S., 2010. The WRF model forecast-derived low-level wind shear 
climatology over the United States great plains. Energies 3 (2), 258–276. https://doi. 
org/10.3390/en3020258. 

Temimi, Marouane, Weston, Michael, Chaouch, Naira, et al., 2017. Sensitivity of the 
meteorological model WRF-ARW to planetary boundary layer schemes during fog 
conditions in a coastal arid region. Atmos. Res. 106–127. 

Wang, H., Xue, M., Zhang, X.Y., Liu, H.L., Zhou, C.H., Tan, S.C., et al., 2015. Mesoscale 
modeling study of the interactions between aerosols and PBL meteorology during a 
haze episode in Jing–Jin–Ji (China) and its nearby surrounding region – Part 1: 
aerosol distributions and meteorological features. Atmos. Chem. Phys. 15 (6), 
3257–3275. https://doi.org/10.5194/acp-15-3257-2015. 

Wang, N., Guo, H., Jiang, F., Ling, Z.H., Wang, T., 2015. Simulation of ozone formation 
at different elevations in mountainous area of Hong Kong using WRF-CMAQ model. 
Sci. Total Environ. 505, 939–951. https://doi.org/10.1016/j.scitotenv.2014.10.070. 

Yamada, T., Mellor, G., 1975. A simulation of the wangara atmospheric boundary layer 
data. J. Atmos. Sci. 32 (12), 2309–2329. 

Yarwood, G., Jung, J., Whitten, G.Z., et al., 2010. Updates to the Carbon Bond 
Mechanism for Version 6(CB6). Presented at the 9th Annual CMAS Conference, 
Chapel Hill, October. 
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